注塑级尼龙PA66 德国朗盛 AKV15H1.0 GF15%玻纤
Durethan® PA66 德国朗盛 AKV15H1.0 GF15%玻纤/PA66干燥处理:如果加工前材料是密封的,那么就没有必要干燥。然而,如果储存容器被打开,那么建议在85℃的热空气中干燥处理。如果湿度大于0.2%,还需要进行105℃,12小时的真空干燥。
熔化温度:260~290℃。对玻璃的添加剂的产品为275~280℃。熔化温度应避免高于300℃。
模具温度:建议80℃.模具温度将影响结晶度,而结晶度将影响产品的物理特性。对于薄壁塑件,如果使用低于40℃的模具温度,则塑件的结晶度将随着时间而变化,为了保持塑件的几何稳定性,需要进行退火处理。
注射压力:通常在750~1250bar,取决于材料和产品设计。
注射速度:高速(对于增强型材料应稍低一些)。
流道和浇口:由于PA66的凝固时间很短,因此浇口的位置非常重要。浇口孔径不要小于0.5*t(这里t为塑件厚度)。如果使用热流道,浇口尺寸应比使用常规流道小一些,因为热流道能够帮助阻止材料过早凝固。如果用潜入式浇口,浇口的Zui小直径应当是0.75mm。
PA66化学和物理特性
PA66在聚氰胺材料中有较高熔点,它是一种半晶体-晶体材料。PA66在较高温度也能保持较强的强度和刚度。PA66在成型后仍然具吸湿性,其程度主要取决于材料的组成、壁厚以及环境条件。在产品设计时,一定要考虑吸湿性对几何稳定性的影响。为了提高PA66的机械特性,经常加入各种各样的改性剂。玻璃就是Zui常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM和SBR等。
PA66的粘性较低,因此流动性很好(但不如PA6)。这个性质可以用来加工很薄的元件。它的粘度对温度变化很敏感。PA66的收缩率在1%~2%之间,加入玻璃纤维添加剂可以将收降低到0.2%~1% 。收缩率在流程方向和与流程方向相垂直方向上的相异是较大的。PA66对许多溶剂具有抗溶性,但对酸和其它一些氯化剂的较弱。
PA66用途级别:
注塑级 产品名称:PA1010冲击强度: J/m2拉伸强度:Mpa密度:(g/cm3) 抗压强度:——(pa) 熔融指数:——(G/10min) 维卡软化点:≤(℃)或≥(℃) 缺口冲击强度:(kJ/m2)热变形温度:(℃)伸长率:(%)弯曲模量:(Mpa)弯曲强度:(mPa)悬臂梁冲击强度:(J/m)熔点:——(℃)熔体流动速率:——(g/10min)断裂伸长率:(%)
PA66产品分类:防静电PA、导电PA、加纤防火PA、防火PA、抗紫外线耐候PA、高温挤出级PA。
聚酰胺塑料制品广泛用作各种机械和电器零件,其中包括轴承、齿轮、滑轮泵叶轮、叶片、高压密封圈、垫、阀座、衬套、输油管、贮油器、绳索、传动带、砂轮胶粘剂、电池箱、电器线圈、电缆接头等。还有包装用带、食品用薄膜(熟食用的高温薄膜和清凉饮料用的低温薄膜)的产量
常用的塑料测试方法简介 拉伸强度和拉伸模量 ASTM D 638, ISO R527, DIN 53455, DIN53457 了解材料对负载的响应程度是了解材料性能的基础。通过测试在一定应力下 材料的变形程度(应变),设计者可以预测材料在其工作环境下的应用(如图1)。 图 1 拉伸应力-应变曲线 A:弹性形变的极限值 B:屈服点 C:Zui大强度 O-A:屈服区域,发生弹性形变 超过 A 点:塑性变形 图2:ASTM D 6, 拉伸试样的尺寸 1 常用的塑料测试方法简介 模量: 应力/应变 Mpa 屈服应力: 开始发生塑性变形的应力 Mpa 断裂应力 发生断裂时的应力 Mpa 断裂伸长率 材料发生断裂时的应变 % 弹性极限 开始发生弹性形变的终点 弹性模量 发生在塑性变形时的模量 Mpa 测试速度: A 速度:1mm/mm 拉伸模量 B 速度:5mm/mm 填充材料 的拉伸应力/应变 C 速度:50mm/mm 为填充材料 的拉伸应力/应变 弯曲强度和弯曲模量 ASTM D 790, ISO 178, DIN 53452 弯曲强度是用来测量材料抵制挠曲变形的能力或者是测试材料的刚性。与拉 伸负载不同的是,在测试弯曲时,所有的应力加载在一个方向上。用压头压在试样 的中部使其形成一个 3 点的负载,在标准测试仪上,恒定的压缩速度为 2mm/mm. 通过计算机收集的数据,测绘出试样的压缩负荷-变形曲线,来计算压缩模 量。在曲线的线性区域至少取 5 个点的负载和变形。 弯曲模量(应力与应变的比值)是表征材料弯曲性能的重要指标。压缩模量 是指在应力-应变的曲线的线性范围内,压缩应力与压缩应变之比。 压缩应力与压缩应变的单位都是Mpa。 图 3:弯曲测试示意图 2 常用的塑料测试方法简介 耐磨性能测试 GE测试方法与ASTM D 1044, ISO 3537, DIN 52347测试方法相似 图 4:Taber 磨损实验 用 Taber 磨损机磨损测试试样,通过计算试样的磨损量来表征材料的耐磨性 能。测试试样放置在一个以恒定转速 60rpm 的旋转转盘上(如图 4 所示),把一 定重量的砂轮压在测试试样上(转盘是通过人工磨出来的,可以获得不同重量的转 盘)。当转盘达到规定的圈数,测试结束。然后称量磨损掉下来的试样碎片的质量 来表征材料的耐磨性能指标,耐磨性的指标是 mg/1000 圈。 ASTM 与 ISO 区别 ASTM 测试试样的厚度是 3mm,而 ISO 测试试样为 4mm。试样厚度的不同, 将会导致测试结果的不同。测试结果的不同是因为测试方法的不同,而不是因为材 料性能的不同。 ISO 测试方法不仅是测试条件,以及试样的尺寸与 ASTM 不同,而且 ISO 的 测试试样需要根据 ISO294 的标准,以规定的加工条件来加工测试试样。 布氏硬度、洛氏硬度和肖氏硬度的比较 洛氏硬度测试在考虑试样的弹性恢复后确定塑料的硬度。这与布氏硬度和肖氏 硬度不同:在布氏和肖氏硬度测试中,硬度值由加载时的陷入深度确定,因而可以 排除材料的弹性恢复。因此洛氏硬度值不能直接与布氏硬度或肖氏硬度相关联。 3 常用的塑料测试方法简介 肖氏硬度A和D值的范围可与布氏压痕硬度值相比。然而他们之间不存在线性关 系(如图 5)。 图 5:硬度范围图 球压痕硬度-ISO 2039-1, DIN 53456 一个直径 5mm的抛光硬化钢珠被压入试样(Zui少 4mm厚)表面,压力为 358 牛 顿(ISO 2039-1)(如图 6)。加载 30 秒后,测量压痕深度并计算出受压面积。 布氏硬度H358/30 由所加负荷除以表面受压面积得到,结果单位为牛顿每mm2。